How is gender bias in science studied? I. Surveys and interviews

9 Jul

Bias: [mass noun] inclination or prejudice for or against one person or group, especially in a way considered to be unfair – Oxford Dictionaries

This is part 1 of my 4-part series about gender bias in science (part 2, part 3). It is not a surprise that I am interested in gender issues in science. As one who has gone through graduate school myself, I have been curious about why many of my classmates decide to leave academia (note 1). As one who now works for a physics & astronomy department, I wonder why there are so few female students studying physics and astronomy, and why physics, the field as a whole, faces such difficult challenges in recruiting and retaining female scientists.

This is also a problem in science, particularly physical sciences.

This is also a problem in science, particularly in physical sciences. Source: “Piled Higher and Deeper” by Jorge Cham.

The cause for the lack of women in science (particularly in physical sciences) is complex and still debated. This is probably why it is very difficult to come up with a specific strategy to deal with it. What I hope to do here is to look at how gender bias, a potential cause for the lack of women in science, is studied. Is it a problem, and if so how serious is it? What does research say? Is there something we can do about it? I will review a few articles written in the past few years – starting with this one that uses surveys and interviews to learn about male and female scientists’ perceptions of gender disparity in physical sciences. In the next few posts, I plan to talk about the use of existing data and well-designed experiments to study gender bias in science. Some of these studies are well done, while others are not. Some of them are misinterpreted generally. Even though each method of studying gender bias has its advantages and drawbacks, together they paint a picture of gender bias in science for us. And this is important – if we don’t understand the problem, how do we know what to do with it? And if we don’t know the scope of the problem, how can we allocate appropriate resources to it without taking resources away from other possible causes?

Because of my background, I am much more familiar with studies in physical sciences, not social sciences. On one hand, I think this good for writing these blog posts because I will be asking a lot of the same questions that you will be asking, dig into the bottom of things, and will be learning as I go. One the other hand, I might be missing something that’s so obvious for social scientists, or important articles on this issue. I invite everyone to be part of this conversation, and hope that I can learn something new myself!

1. Reviewing data from surveys and interviews

Ecklund, Lincoln and Tansey published their study, “Gender Segregation in Elite Academic Science” in Gender & Society last year (2012) (The article is accessible through the National Science Foundation! Well, at least I found the link hosted on their site). This study was based on data collected from a survey of 2503 scientists in physics and biology (graduate students to full professors). These two fields were chosen by the authors because while they are both core disciplines in science, the male to female ratios within these disciplines are very different. The scientists were asked to choose why they think the best explanation is for there being fewer women in physics than in biology (rephrased options): a) more natural ability in biology, b) preference for biology over physics, c) more funding for women in biology, d) more discrimination for women in physics than in biology, e) fewer mentors for women in physics than in biology, and f) other. 150 respondents were later selected for in-depth interview.

The majority of the people chose one of a), b), d), and e) – I counted about 70-80%  of them (few chose c according to the authors). 18.6% chose f). Interestingly, you can see from Figure 1 that about the same percentage of female and male scientists choosing a) natural ability and e) fewer mentor (there is more about this to come). On the other hand, there seems to be a gap when it comes to b) preference and d) discrimination – more men chose b) and more women chose d), especially those who are established female scientists.

It will take a bit more than just looking at the graphs to tease out the details. The authors used multivariate logistic regression to look more carefully at the survey data to see if the differences are indeed significant. I tend to get very nervous when it comes to the statistical analysis of multiple variables – because the it is hard to tell if the variants interact with each other or not. But we will set that aside for now.

Compared to senior male biology faculty (the omitted category), women at all career stages in physics are less likely to say that preferences explain the disparity between disciplines. Women faculty in both [physics and biology] disciplines are more likely to cite discrimination, while senior male faculty as well as male postdoctoral fellows are generally less likely to agree.

This also changes with the career stage a female scientist is in:

Conversely, the demand-side argument that women face more discrimination in physics is least supported by graduate students and postdoctoral fellows but gradually gain traction among faculty, particularly with women.

The authors cited several possible reasons. Perhaps there is a selection effect – that those who stay in academia happens to agree with the argument (so those who disagree with discrimination being a reason were selected out in the process of academic career advancement). Perhaps those who have stayed in academia for a while experience more discrimination over time. Or, perhaps things are actually better, so the younger scientists do not experience (as much?) discrimination as those who started out 10-20 years ago.

Information from the interviews provides some qualitative narratives to further illustrate what was found in the quantitative data analysis. What I find most interesting is that while the percentage of male scientists who chose “natural ability” and that of female scientists are similar, it appears that they might define natural ability very differently:

Scientists who are men talked about brain differences and mathematic ability while women scientists mentioned connecting with their subjects (meaning that women are better able to connect to the subject matter of biology, such as working with animals, versus the subject matter of physics, such as working with particles).

(By the way, if you plan to tell me it’s about mean/right-tail, biological sex/brain development/innate math ability differences, I refer you to additional reading on this matter. In short, it is BS, so please stop referring to this as the reason.)

When it comes to the matter of discrimination or discouragement, male and female scientists also have different perceptions. Male scientists tend to focus on what happens earlier on in a woman’s life, while female scientists tend to focus on the current environment.

Men were more likely than women to discuss these deficits in the educational system, explaining that socialization subtly discourages girls from taking physics classes.


It was predominantly women who identified the present-day structure and environment of physics departments as discouraging women from entering physics.

Last but not the least, while to me academia is academia is academia, some respondents actually pointed to the difficulty in balancing family and research in physics as a reason. It seems that something about physics gives people the impression that doing research in physics makes it harder to balance a family life.

Although these scientists argued that there may be something in particular about physics (compared to biology) that makes it more difficult to balance family life with an academic career, our survey data demonstrate that women scientists in both disciplines work approximately the same number of hours per week. […] This provides some evidence that career-family difficulties may not actually be unique to physics as a discipline, but rather that the perception of the structure of physics itself may cause tension between career and family responsibilities.

It is very interesting for me to read about how male and female scientists perceive the reason of gender disparity in physics and biology very differently – like a he said, she said story. The interview narratives gave us a lot more insights into this discrepancy in perception.

BUT, we do need to keep in mind that surveys and interviews are rather subjective. In fact, we cannot say from results of the surveys and interviews that bias and discrimination do or do not happen, as the perception of this might be different from the reality – thinking so doesn’t mean that it actually is so (but there are ways to determine actual bias and its effects – this is done in two papers that I will talk about in part III). Media, unfortunately, tend to focus on the words “bias” and “discrimination” and forget about what the study really says (see this, “solved the mystery?” I wish it were that easy. And this, and this by their public affairs office, with terrible headlines). This makes the already complicated issue even more difficult to tease out. For me, the most important message of this study is this: We should note the difference in perception by male and female scientists, as this difference might indeed contributes to the difficulty in resolving gender disparity in science. Furthermore, improving the perception of science and different fields of science, either by improving program structures or better promotion of the fields, could potentially encourage the next generation of female scientists to enter scientific careers.

Next week, I will be talking about two papers: Fewer invited talks by women in evolutionary biology symposia by Schroeder et al, published in the Journal of Evolutionary Biology just last month. And, Stag Parties Linger: Continued Gender Bias in a Female-Rich Scientific Discipline by Isbell, Young, and Harcourt, published by PLOS ONE November 2012. (Read part 2 here)

Ecklund E.H., Lincoln A.E. & Tansey C. (2012). Gender Segregation in Elite Academic Science, Gender & Society, 26 (5) 693-717. DOI:


It is difficult to figure out what cause the lack of women in science, and it is even hard to figure out what to do. Here are a few different points of views:

Additional reading about math performance and gender

  • The review by Ceci, Williams, and Barnett in 2009 went through great length to discuss sociocultural and biological considerations for women’s underrepresentation in science, digging into research results that I wouldn’t have thought to be relevant.
  • Janet S. Hydea,and Janet E. Mertzb reviewed available literature at the time (2009) in their article Gender, culture, and mathematics performance.
  • And, just for fun, how can we forget about Larry Summers’ comment about the lack of women in science *double-facepalm*(this comic is meant to be sarcastic, by the way!)

Larry Summer on Women in Science


7 Responses to “How is gender bias in science studied? I. Surveys and interviews”

  1. Saundra October 13, 2014 at 10:03 am #

    Wonderful website you have here but I was wondering if you knew of any community forums
    that cover the same topics discussed here? I’d really like to be a part of community where I can get feed-back
    from other knowledgeable people that share the same interest.
    If you have any recommendations, please let me know.

    • Terrific T October 14, 2014 at 8:54 am #

      Hello Saundra,

      That’s a great question – I have 1 or 2 in mind, but I am going to ask some people on twitter so that I can give you a better “collection” (useful information regardless). Will let you know soon!


  1. The decline and fall of the Linkspam Empire (16 July 2013) | Geek Feminism Blog - July 16, 2013

    […] How is gender bias in science studied? I. Surveys and interviews | Science, I Choose You!: “This is part 1 of my 4-part series about gender bias in science.” […]

  2. How is gender bias in science studied? II. Learning from existing data | Science, I Choose You! - July 23, 2013

    […] This is part 2 of my 4-part series about studying gender bias in science (See part 1). […]

  3. How is gender bias in science studied? III. Experiments | Science, I Choose You! - October 28, 2013

    […] is part 3 of my series on gender bias in science. Read Part 1. Read Part […]

  4. How is gender bias in science studied? IV. The future | Science, I Choose You! - December 10, 2013

    […] is studied. In the past few weeks, I summarized how gender bias in science has been studied: through surveys and interviews (Part 1), through existing data (Part 2), and through experimentation (Part 3). What we have learned is that […]

  5. Women in STEM – 2014 in Review | Science, I Choose You! - December 31, 2014

    […] wrote a 4-part series on how gender bias in science is studied. While I agree that many of the studies relied on anecdotal data, we do have experimental data demonstrating that junior scientists with female names are less […]

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: